
\
PERGAMON International Journal of Solids and Structures 25 "0888# 586Ð698

9919Ð6572:88:, ! see front matter Þ 0887 Elsevier Science Ltd[ All rights reserved
PII ] S 9 9 1 9 Ð 6 5 7 2 " 8 7 # 9 9 9 3 0 Ð 8

Stress intensity factors around a cylindrical crack in an
interfacial zone in composite materials

Shouetsu Itou�\ Yasufumi Shima
Department of Mechanical Engineering\ Kanagawa University\ Yokohama 110\ Japan

Received 6 April 0886 ^ in revised form 16 January 0887

Abstract

Axisymmetric stresses around a cylindrical crack in an interfacial cylindrical layer between an in_nite
elastic medium with a cylindrical cavity and a circular elastic cylinder made of another material have been
determined[ The material constants of the layer vary continuously from those of the in_nite medium to
those of the cylinder[ Tension surrounding the cylinder and perpendicular to the axis of the cylinder is
applied to the composite materials[ To solve this problem\ the interfacial layer is divided into several layers
with di}erent material properties[ The boundary conditions are reduced to dual integral equations[ The
di}erences in the crack faces are expanded in a series so as to satisfy the conditions outside the crack[ The
unknown coe.cients in the series are solved using the conditions inside the crack[ Numerical calculations
are performed for several thicknesses of the interfacial layer[ Using these numerical results\ the stress intensity
factors are evaluated for in_nitesimal thickness of the layer[ Þ 0887 Elsevier Science Ltd[ All rights reserved[

0[ Introduction

Fiber reinforced composite materials are lightweight and strong and will rapidly replace con!
ventional materials such as steel\ aluminum and epoxy in aeronautics\ high speed train trans!
portation and the automotive industry[ However\ the interfacial zone between the _ber and the
matrix in the materials is relatively weak and is inclined to fracture[ Therefore\ the problem of
stress intensity factors around a cylindrical crack that appears in the zone or in the cylindrical thin
layer must be solved[

Delale and Erdogan "0877# considered that the elastic constants vary continuously across
the interfacial layer and they solved the two!dimensional problem for a crack in an interfacial
nonhomogeneous layer between two dissimilar elastic half!planes[ Recently\ axisymmetric solu!
tions have been determined for a penny!shaped crack in an interfacial nonhomogeneous layer
between two dissimilar elastic half!spaces by Ozturk and Erdogan "0884\ 0885#[
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As mentioned above\ solutions for a cylindrical interfacial crack are useful in the fracture
mechanics of _ber reinforced composite materials[ Quite recently\ Xue!Li and Duo "0885# provided
the stresses around a cylindrical crack in a nonhomogeneous layer between an in_nite elastic
medium and a circular elastic cylinder embedded in it[ They studied the problem under Mode III
torsional loading[ To our knowledge\ the corresponding solution for Mode I loading has not been
examined[

In the present paper\ axisymmetric stresses are obtained for a cylindrical crack in the interfacial
layer between circular elastic cylinder and an in_nite elastic medium under tension surrounding
the cylinder[ It is assumed that the material constants vary continuously from those of the cylinder
to those of the in_nite medium[ To solve the problem\ the interfacial cylindrical layer is divided
into several layers with di}erent elastic constants[ Application of the Fourier transformation
technique reduces the boundary conditions to two dual integral equations[ One of the equations
is satis_ed by expanding the di}erences of displacements in a series of functions which are zero
outside the crack[ Using the remaining boundary conditions inside the crack\ the unknown
coe.cients in each series are determined[

If the number of the divided cylindrical layers increases\ the stresses obtained are identical with
those of the interfacial layer\ of which the material constants vary continuously[

The stress intensity factors are computed numerically for several thicknesses of the layer[ Using
these results\ the values of the stress intensity factors for a very thin layer are evaluated[

1[ Fundamental equations

Let "r\ u\ z# be a cylindrical coordinate system[ As shown in Fig[ 0\ a circular cylinder "B# with
radius rb is _xed inside an in_nite elastic body "C# containing a cylindrical cavity with radius rc[
An interfacial cylindrical layer "A# is denoted by rb Y r Y rc[ The thickness of the layer is described
by h " � rc−rb#[ Young|s modulus and Poisson|s ratio of the cylinder "B#\ the interfacial layer "A#
and the in_nite body "C# are shown by "EB\ nB#\ "EA\ nA# and "EC\ nC#\ respectively[

An interfacial crack is placed along the z!axis from −a to ¦a on r � ra[ For convenience\ the
interfacial layer "A# is further divided into the layer "A!0# denoted by "rb Y r Y ra# and the layer

Fig[ 0[ Geometry and coordinate system[



S[ Itou\ Y[ Shima : International Journal of Solids and Structures 25 "0888# 586Ð698 588

Fig[ 1[ Young|s modulus and Poisson|s ratio as a function of r[

"A!1# denoted by "ra Y r Y rc#[ Elastic constants "EA\ nA# most likely vary continuously in the
interfacial layer with respect to r as shown in Fig[ 1[

The stress and displacement components for an axisymmetric problem can be expressed by the
equations ]

trr � 1:1z"n91−11:1r1#f

tzz � 1:1z""1−n#91−11:1z1#f

tuu � 1:1z"n91−"0:r#1:1r#f

trz � 1:1r""0−n#91−11:1z1#f "0#

ur � −"0¦n#:E 11f:1r 1z

uz � "0¦n#:E""0−1n#91¦11:1r1¦"0:r# 1:1r#f "1#

where f is a biharmonic function which satis_es

93f � 9 "2#

with

91 � 11:1r1¦"0:r# 1:1r¦11:1z1[ "3#

The tension p\ surrounding the cylinder and perpendicular to the z!axis\ is assumed to be applied
to the composite materials[ Then\ the stress intensity factors can be provided by solving the
problem using the following boundary conditions ]

trrC � trrA1\ trzC � trzA1\ urc � urA1\ uzC � uzA1 at r � rc\ =z= ³ � "4#

trrA0 � trrB\ trzA0 � trzB\ urA0 � urB\ uzA0 � uzB at r � rb\ =z= ³ � "5#

trrA0 � trrA1\ trzA0 � trzA1 at r � ra\ =z= ³ � "6#

trrA0 � −p\ trzA0 � 9 at r � ra\ 9 Y =z= ³ a "7#
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urA0 � urA1\ uzA0 � uzA1 at r � ra\ a ³ =z= ³ � "8#

where p is a constant and the variables with subscripts A0\ A1\ B\ C are those for layers "A!0#\ "A!
1#\ cylinder "B# and in_nite body "C#\ respectively[

2[ Division of interfacial layer

The interfacial cylindrical layer "A# in Fig[ 0 is divided into several layers\ where the number\
m\ of the divided layers must be odd[ To illustrate the process of solving the problem\ m is set to
three[ Namely\ the interfacial layer "A# is divided into layer "0# occupying rb Y r Y r0\ layer "1#
occupying r0 Y r Y r1\ and layer "2# occupying r1 Y r Y rc as shown in Fig[ 2[ Layer "1# which
contains the cylindrical crack is further divided into layer "1#!0 occupying r0 Y r Y ra and layer
"1#!1 occupying ra Y r Y r1[

Here\ the material constants in the interfacial layer "A# are assumed to vary linearly with respect
to r[ Then\ EA and nA are expressed by

EA � "Ec−EB#:"rc−rb#×"r−rb#¦EB

nA � "nc−nB#:"rc−rb#×"r−rb#¦nB[ "09#

For m � 2\ the material constants of layers "0#\ "1#\ "2# take the average values "E0\ n0#\ "E1\ n1#\
"E2\ n2# instead of "EA\ nA# as seen in Fig[ 3[

Then\ the boundary conditions "4#Ð"8# can be expressed by the following equations ]

trrC � trr2\ trzC � trz2\ urc � ur2\ uzC � uz2 at r � rc\ =z= ³ � "00#

trr2 � trr11\ trz2 � trz11\ ur2 � ur11\ uz2 � uz11 at r � r1\ =z= ³ � "01#

trr10 � trr0\ trz10 � trz0\ ur10 � ur0\ uz10 � uz0 at r � r0\ =z= ³ � "02#

trr0 � trrB\ trz0 � trzB\ ur0 � urB\ uz0 � uzB at r � rb\ =z= ³ � "03#

trr11 � trr10\ trz11 � trz10\ at r � ra\ =z= ³ � "04#

trr11 � −p\ trz11 � 9 at r � ra\ 9 Y =z= ³ a "05#

Fig[ 2[ Interfacial layer replaced by three layers[
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Fig[ 3[ Material constants in replaced layers[

ur11 � ur10\ uz11 � uz10 at r � ra\ a ³ =z= ³ � "06#

where the variables with subscripts 0\ 10\ 11\ 2 are those for layers "0#\ "1#!0\ "1#!1 and "2#\
respectively[

3[ Analysis

To _nd the solution of eqn "2#\ the Fourier transforms which are de_ned by

f¹"j# � g
�

−�

f"z# exp"ijz# dz\ f"z# � 0:"1p# g
�

−�

f¹"j# exp"−ijz# dj "07#

are introduced[ Applying eqn "07# to eqn "2# yields

"11:1r1¦0:r×1:1r−j1#1f¹ � 9[ "08#

The solutions of eqn "08# have the following forms for the layers "i# "i � 0\ 10\ 11\ 2# ]

f¹ i � A0i"j#K9"jr#¦A1i"j#jrK0"jr#¦B0i"j#I9"jr#¦B1i"j#jrI0"jr#[ "19#

For the cylinder "B# and the in_nite body "C#\ f¹ i are given by

f¹ B � B0B"j#I9"jr#¦B1B"j#jrI0"jr#

f¹ C � A0C"j#K9"jr#¦A1C"j#jrK0"jr#[ "10#

In eqns "19# and "10#\ In"jr# and Kn"jr# are modi_ed Besel functions of the _rst and second kind\
respectively\ and A0i"j#\ A1i"j#\ [ [ [ \ A1C"j# are unknown coe.cients[ By substituting eqns "19# and
"10# into eqns "0# and "1# in the Fourier transform domain\ Fourier transformed expressions of
stresses and displacements are obtained[ Then\ the boundary conditions "00#\ "01#\ "02#\ "03# and
"04#\ which are valid for =z= ³ �\ can be easily satis_ed[

To satisfy the boundary condition "06#\ di}erences "ur11−ur10# and "uz11−uz10# at r � ra are
represented in the series expansions
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"ur11−ur10# � s
�

n�0

cn cos ""1n−0# sin−0"z:a## for =z= ³ a

� 9 for a ³ =z= "11#

"uz11−uz10# � s
�

n�0

dn sin "1n sin−0"z:a## for =z= ³ a

� 9 for a ³ =z= "12#

where cn and dn are unknown coe.cients that need to be determined[ Then\ it is easily shown that
stresses that satisfy the boundary conditions "00#Ð"04# and "06# can be expressed by the unknown
coe.cients cn and dn[ For example\ stresses trr11 and trz11 at r � ra are given by

trr11 � s
�

n�0

cn"1n−0#:pg
�

9

Q0"j#:jJ1n−0"aj# cos"jz#dj

¦ s
�

n�0

dn"1n#:pg
�

9

Q1"j#:jJ1n"aj# cos"jz# dj

trz11 � s
�

n�0

cn"1n−0#:p g
�

9

Q2"j#:jJ1n−0"aj# sin"jz# dj

¦ s
�

n�0

dn"1n#:p g
�

9

Q3"j#:jJ1n"aj# sin"jz# dj "13#

where Jn"j# is the Bessel function and the expressions of known functions Q0"j#\ Q1"j#\ Q2"j#\
Q3"j# are complex and have been omitted[ The semi!in_nite integrals in eqn "13# must be evaluated
by numerical integration[ If functions Q0"j#\ Q1"j#\ Q2"j#\ Q3"j# are calculated numerically\ the
results will show that Q1"j# is equal to Q2"j# and decaies rapidly as j increases[ Functions Qi"j#
"i � 0 and 3# are proportional to j as j increases\ namely

Qi"j#:j : QL
i \ for i � 0 and 3[ "14#

In eqn "14#\ constants QL
i can be calculated by

QL
i � Qi"jL#:jL "15#

with jL being a large value of j[
Finally\ the remaining boundary condition "05# can be reduced to the equations

s
�

n�0

cn`n"z#¦ s
�

n�0

dnhn"z# � −p

s
�

n�0

cnkn"z#¦ s
�

n�0

dnln"z# � 9 for 9 Y z ³ a "16#

with
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`n"z# � "1n−0#:p$g
�

9

"Q0"j#:j−QL
0#J1n−0"aj# cos"jz# dj

¦QL
0 cos ""1n−0# sin−0"z:a##:"a1−z1#0:1%

hn"z# � 1n:p g
�

9

Q1"j#:jJ1n"aj# cos"jz# dj

kn"z# � "1n−0#:p g
�

9

Q2"j#:jJ1n−0"aj# sin"jz# dj

ln"z# � 1n:p$g
�

9

"Q3"j#:j−QL
3#J1n"aj# sin"jz# dj

¦QL
3 sin "1n sin−0"z:a##:"a1−z1#0:1%[ "17#

The integrands in eqn "17# decrease rapidly and thus numerical integrations can be performed[
Equation "16# can be solved for coe.cients cn and dn using the Schmidt method "Yau\ 0856#[

Stresses at r � ra are given by eqn "13#[ Using the relations

g
�

9

Jn"aj#"cos"jz#\ sin"jz## dj � ð−an"z1−a1#−0:1"z¦"z1−a1#0:1#−n sin"np#\

an"z1−a1#−0:1"z¦"z1−a1#0:1#−n cos"np#Ł "18#
the stress intensity factors can be de_ned by

K0 � "1p"z−a##0:1trr11 =z:a¦

� s
�

n�0

cnQ
L
0 "1n−0#"−0#n:"pa#0:1

K1 � "1p"z−a##0:1trz11 =z:a¦

� s
�

n�0

dnQ
L
3 "1n#"−0#n:"pa#0:1[ "29#

In Sections 2 and 3\ stress intensity factors were solved only for m � 2[ It is quite straightforward
to obtain the solutions for m � 0\ 4\ 6[ The values K0 and K1 are calculated numerically for m � 0\
2\ 4\ 6 and are plotted vs 0:m[ Then\ the results for the interfacial layer\ of which the material
constants vary continuously with respect to r\ can be obtained by the values for 0:m : 9[ This
process is explained in detail below[

4[ Numerical results

Numerical calculations are carried out for ra � rb¦h:1 " � rc−h:1#[ Namely\ the cylindrical
crack is situated on the middle!surface of the interfacial cylindrical layer[ It is assumed that
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Table 0
Values of Qi"ja#:"ja# "i � 0\ 1\ 2\ 3# for ra:a � 0[9\ h:"1a# � 9[94\ EB:EC � 09[9 and m � 6

"ja# Q0"ja#:"ja# Q1"ja#:"ja# Q2"ja#:"ja# Q3"ja#:"ja#

9[90 −9[7515428×091 −9[1483363×099 −9[14483363×099 −9[3827200×09−0

9[10 −9[3157222×090 −9[1848322×099 −9[1848322×099 −9[4717868×099

126[70 −9[0385944×090 −9[4326239×09−0 −9[4326239×09−0 −9[0496997×090

127[90 −9[0385974×090 −9[4329985×09−0 −9[4329985×09−0 −9[0496900×090

364[70 −9[0498550×090 −9[6978467×09−1 −9[6978467×09−1 −9[0409136×090

365[90 −9[0498553×090 −9[6964697×09−1 −9[6964697×09−1 −9[0409137×090

Table 1
Values for the left hand side of eqn "16# for ra:a � 0[9\ h:"1a# � 9[94\ EB:EC � 09[9 and
m � 6

s
07

n�0

"cn`n"z:a#¦dnhn"z:a##:p s
07

n�0

"cnkn"z:a#¦dnln"z:a##:p

z:a � 9[99099 0[999993 9[999990
9[91521 0[999999 9[999999
9[49999 0[999999 9[999999
9[86257 0[999999 9[999999
9[88899 0[999999 9[999999

Poisson|s ratio nB is equal to nC\ and that they have a value of 9[2[ Equation "09# shows that
nA � 9[2[ The interfacial layer "A# is divided into m layers with the same thickness\ h:m[

Functions `n"z#\ hn"z#\ kn"z# and ln"z# contain an in_nite integral[ The integrands in these
functions decay rapidly as the integration variable j increases[ The functions themselves decrease
more slowly according to the decreases in both the h:a and EC:EB ratios[ In Table 0\ the values of
Qi"ja#:"ja# "i � 0\ 1\ 2\ 3# are denoted for ra:a � 0[9\ h:"1a# � 9[94\ EB:EC � 09[9 and m � 6[ As
indicated in the table\ numerical integrations can be satisfactorily performed[ The accuracy of the
Schmidt method decreases as both the h:a and EC:EB ratios decrease[ To solve cn and dn in eqn
"16#\ the Schmidt method has been applied by truncating the in_nite series in eqn "16# at N[ In
Table 1\ the values for the left hand side of eqn "16# are shown for ra:a � 0[9\ h:"1a# � 9[94\
EB:EC � 09[9 and m � 6\ where N is set at 07[ From the Table\ it can be seen that the Schmidt
method has been applied satisfactorily[ In order to verify whether the result of the stress intensity
factor converges to a constant value as N increases\ the stress intensity factors K0 and K1 are
plotted vs N in Fig[ 4[ Clearly convergence is excellent[

As mentioned above\ the in_nite integrals contained in `n"z#\ hn"z#\ kn"z# and ln"z# must be
evaluated numerically[ For ra:a � 0[9\ h:"1a# � 9[94\ EB:EC � 09[9\ m � 6 and N � 07\ the in_nite
integrals are calculated taking the upper limit of integration as "jLa# � 49[90\ 099[90\ [ [ [ \ 399[90
and 365[90[ In Fig[ 5\ the stress intensity factors K0 and K1 are shown with respect to "jLa#[ From
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Fig[ 4[ Stress intensity factors K0 and K1 for ra:a � 0[9\ h:"1a# � 9[94\ EB:EC � 09[9\ m � 6 vs N[

Fig[ 5[ Stress intensity factors K0 and K1 for ra:a � 0[9\ h:"1a# � 9[94\ EB:EC � 09[9\ m � 6\ N � 07 vs "jLa#[

this\ it is clear that the stress intensity factors converge to constant values when the upper limit of
integration in the in_nite integrals is replaced by a larger value[

Next\ the stress intensity factors K0 and K1 are calculated for ra:a � 0[9\ h:"1a# � 9[94\
EB:EC � 09[9 and m � 0\ 2\ 4\ 6[ The results of the stress intensity factors K0 and K1\ which are
plotted vs 0:m in Fig[ 6\ lie in straight lines[ The material constants are thought to vary continuously
across the actual interfacial layer[ However\ the values of the stress intensity factors for the layer
can be given if the interfacial layer is replaced by the divided layers of the in_nite number[ Namely\
the values can be provided by those at 0:m : 9 in Fig[ 6[

The interfacial cylindrical layer between the _ber and the matrix is very thin[ However\ as the
value of the thickness h decreases or as the EC:EB ratio decreases\ more and more terms are required
to solve coe.cients cn and dn using the Schmidt method[ When the in_nite series in eqn "16# is
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Fig[ 6[ Stress intensity factors K0 and K1 for ra:a � 0[9\ h:"1a# � 9[94\ EB:EC � 09[9 vs 0:m[

Fig[ 7[ Stress intensity factors K0 and K1 for ra:a � 0[9\ EB:EC � 1[9[

truncated by a value larger than n � 07\ over~ows occur in the process of numerical calculations[
Therefore\ the stress intensity factors K0 and K1 cannot be provided for h:"1a# ³ 9[94[

In Figs 7Ð00\ the stress intensity factors K0 and K1 are plotted vs h:"1a# for ra:a � 0[9 and
EB:EC � 1[9\ 3[9\ 7[9\ 09[9[ In these _gures\ the values for h:"1a# ³ 9[94 are not calculated numeri!
cally and the broken lines for the range are given by curves of the fourth degree\ which are
determined using the calculated values of h:"1a# � 9[94\ 9[0\ 9[1\ 9[2\ 9[3[ The curves of K0 and K1

vs 0−"EC:EB# are shown in Figs 01 and 02\ respectively\ where the broken lines are plotted using
the values for h:"1a# : 9 in Figs 7Ð00[ The values for "0−"EC:EB## � 9[9 are identical with those
calculated for a cylindrical crack in an homogeneous isotropic solid "Kasano et al[\ 0873#[

5[ Discussion

In the present paper\ stress intensity factors are analysed under the assumption that the material
constants in the interfacial layer vary linearly with respect to r[ For any variations of the material
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Fig[ 8[ Stress intensity factors K0 and K1 for ra:a � 0[9\ EB:EC � 3[9[

Fig[ 09[ Stress intensity factors K0 and K1 for ra:a � 0[9\ EB:EC � 7[9[

Fig[ 00[ Stress intensity factors K0 and K1 for ra:a � 0[9\ EB:EC � 09[9[
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Fig[ 01[ Stress intensity factors K0 for ra:a � 0[9 vs 0−"EC:EB#[

Fig[ 02[ Stress intensity factors K1 for ra:a � 0[9 vs 0−"EC:EB#[

property in the interfacial layer\ the stress intensity factors can be obtained in a straightforward
manner[ In numerical calculations\ the cylindrical crack is assumed to be situated on the middle!
surface of the interfacial cylindrical layer[ In addition\ there appears to be no di.culty in calculating
the stress intensity factors around an arbitrarily situated crack[

Any interfacial zone that exists in _ber reinforced plastics is very thin[ Thus\ the actual values
of the stress intensity factors around the cylindrical crack in the interfacial layer may be considered
to be expressed by the broken curves in Figs 01 and 02[ These values steadily increase as the EC:EB

ratio decreases[ Consequently\ selection of reinforcement that has a Young|s modulus not much
larger than that of the matrix is advisable[

If the EB:EC ratio is smaller than 1[9\ that is\ the value "0−EC:EB# is smaller than 9[4\ the e}ect
of the ratio on both K0 and K1 around a cylindrical crack in an interfacial zone is negligible[
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